MATEMÁTICA FINANCIERA EJERCICIOS Y PROBLEMAS RESUELTOS EN PDF Y VIDEOS

Share Button


Todas las actividades financieras descansan en la costumbre de pagar un rédito por el uso
del dinero prestado. La mayor parte de los ingresos de los bancos y compañías
inversionistas se deriva de los intereses sobre préstamos o de retorno de utilidades por
inversiones. En general, todas las operaciones comerciales están relacionadas con los
réditos sobre los capitales en juego.
Toda persona que obtiene un préstamo queda obligada a pagar un rédito (renta de un
capital) o interés, por el uso del dinero tomado en préstamo. En general, el dinero genera
dinero, acumulando valores que varían con el tiempo; el análisis de las causas de la
acumulación del dinero en el tiempo es el problema fundamental de las finanzas.
INDICE :
Importancia de las matemáticas financieras
Definiciones de las matemáticas financieras
Definiciones de proyecto
Inversiones
Proceso de toma de decisiones
Aspectos básicos de un análisis de inversiones
Valor del dinero en el tiempo
Interés
Tasa de interés
Equivalencia
Diagrama de tiempo o flujo de caja
INTERES SIMPLE
Definición del interés simple
Clases de intereses Simple
Desventajas del interés simple
Tablas de Días
Monto o valor futuro a interés simple
Valor presente o actual a interés simple
Cálculo de la tasa de interés simple
Cálculo del tiempo
Descuentos
Descuento comercial o bancario
Descuento real o justo
Descuento racional o matemático
Ecuaciones de valor
INTERES COMPUESTO.
Introducción
Definición del interés compuesto
Subdivisión del interés compuesto
Comparación entre el interés simple y compuesto
Periodo
Valor futuro equivalente a un presente dado
Cálculo del valor presente equivalente de un valor futuro
Cálculo del número de períodos
Calculo del Interés
Interpolación lineal
Descuento compuesto
TASAS DE INTERES Y EQUIVALENCIA ENTRE TASAS
Tasa de interés periódica
Tasa de interés nominal
Tasa de interés efectivo
Tasa de interés anticipada
Tasas equivalentes
Tasa de interés continuo
Cálculo del valor futuro dado un valor presente
Cálculo del valor presente dado un valor futuro
Cálculo del tiempo (n)
Tasas combinadas o compuesta
Préstamo e inversión en moneda extranjera
Devaluación
Tasa de cambio
Tasa de cambio fija
Tasa de cambio variable (flotante)
Tasa de devaluación
Revaluación
Tasa de revaluación
Inflación
Unidad de valor real (UVR)
Metodología para el cálculo de la UVR
Aplicación de las ecuaciones de valor con interés compuesto
SERIES UNIFORMES O ANUALIDADES
Definición de anualidad
Renta o pago
Periodo de renta
Plazo de una anualidad
Requisitos para que exista una anualidad
Clasificación de las anualidades según el tiempo
Anualidades ciertas
Anualidades contingentes
Clasificación de las anualidades según los intereses
Anualidades simples
Anualidades generales
Clasificación de las anualidades según el momento de iniciación 128
Anualidades diferidas
Anualidades inmediatas
Clasificación de las anualidades según los pagos
Anualidades vencidas
Anualidades anticipadas
Valor presente de una anualidad vencida
Cálculo de la anualidad en función del valor presente
Valor futuro de una anualidad vencida
Cálculo de la anualidad en función del valor futuro
Calculo del tiempo en una anualidad vencida
Cálculo de la tasa de interés de una anualidad vencida
Anualidades anticipadas
Valor presente de una anualidad anticipada
Cálculo de una anualidad anticipada en función del valor presente
Valor futuro de una anualidad anticipada
Cálculo del tiempo en una anualidad anticipada
Cálculo de la tasa de interés de una anualidad anticipada
Anualidades diferidas
Anualidades perpetúas
Anualidades generales
GRADIENTES O SERIES VARIABLES
Gradiente Aritmético o lineal
Valor presente de un gradiente aritmético o lineal creciente
Valor futuro de un gradiente aritmético o lineal creciente
Gradiente lineal decreciente
Valor presente de un gradiente lineal decreciente
Valor futuro de un gradiente lineal decreciente
Gradiente geométrico o exponencial
Valor presente de un gradiente geométrico creciente
Valor futuro de un gradiente geométrico creciente
Gradiente geométrico decreciente
Valor presente de un gradiente geométrico decreciente
Valor futuro de un gradiente geométrico decreciente
Gradiente aritmético perpetuo
Gradiente aritmético perpetuo
AMORTIZACION
Amortización con cuotas uniformes y cuotas extras pactadas.
Amortización con cuotas uniformes
Amortización con cuotas extras pactadas
Amortización con cuotas extras no pactadas
Amortización con período de gracia
Distribución de un pago
Amortización con abono constante a capital e intereses vencidos
Amortización con abono constante a capital e intereses anticipados
Amortización en moneda extranjera

Desde su aparición el dinero es parte importante de la vida del hombre y ha tratado de
utilizarlo de la manera más óptima y adecuada; pero hoy por la globalización de la
economía ha adquirido una importancia relevante, ya que todas las transacciones se
realiza a través del uso del dinero, por eso es conveniente que se sepa manejar para
que genere los máximos beneficios y se aproveche a su máxima utilidad; por lo que es
importante comprender de manera clara cómo el dinero puede ganar o perder o
cambiar de valor en el tiempo, debido a fenómenos económicos como la inflación y
devaluación, por lo cual es relevante usar y empleo con claridad y precisión los
conceptos de las matemáticas financieras.
Además, es importante el manejo de las matemáticas financieras ya que la economía
de un país, se basa en diferentes operaciones financieras y que para tomar una
decisión acertada, es necesario e indispensable tener en cuenta que a través del
tiempo el valor del dinero puede tener variaciones.
Se ha tratado de exponer cada una de las unidades de una manera clara y sencilla y
usando un lenguaje simple para que el lector encuentre interesante el campo de las
matemáticas financieras; pero es conveniente aclarar que esta disciplina, como todas
las que tienen que ver con las matemáticas, exigen un trabajo práctico dedicado, por lo
que se recomienda realizar los ejercicios resueltos y propuestos. EL libro contiene
suficientes ejemplos resueltos paso a paso que le proporciona al lector la destreza
necesaria para resolver los ejercicios propuestos con sus respectivas respuestas, los
cuales servirán para afianzar los conocimientos adquiridos a través de los capítulos.
Teniendo en cuenta que la intención u objetivo del presente libro, es que el lector
conozca los conceptos fundamentales de las matemáticas financieras para que pueda
aplicarlos en el mundo financiero

Comments are closed.

CÁLCULO DE INTEGRALES EJERCICIOS Y PROBLEMAS RESUELTOS EN PDF Y VIDEOS
ECUACIONES DIFERENCIALES EJERCICIOS Y PROBLEMAS RESUELTOS EN PDF Y VIDEOS