DERIVADAS

Nuestro primer problema es muy antiguo; se remonta a la época del gran científico griego Arquímedes (287-212 A. C.). Nos referimos al problema de la pendiente de la recta tangente. Nuestro segundo problema es más reciente. Surgió con los intentos de Kepler (1571-1630), Galileo (1564-1642), Newton (1642-1727) y otros para describir la velocidad de un cuerpo en movimiento. Es el problema de la velocidad instantánea.
Los dos problemas, uno geométrico y el otro mecánico, parecen no estar muy relacionados.
En este caso, las apariencias engañan. Los dos problemas son gemelos idénticos.
La recta tangente La noción de Euclides de una tangente, como una recta que toca a una curva en un solo punto es totalmente correcta para circunferencias; pero completamente insatisfactoria para otras curvas . La
idea de una tangente, en P a una curva como la recta que mejor se aproxima a la curva cerca de P es bastante mejor, pero aún muy vaga para la precisión matemática. El concepto de límite proporciona una manera de obtener una mejor descripción.

La importancia del Cálculo en el mundo actual es enorme, ya que la ciencia y la tecnología modernas sencillamente serían imposibles sin él. Las leyes de la naturaleza se expresan mediante ecuaciones que involucran funciones y sus derivadas, y el análisis de éstas ecuaciones se realiza mediante las herramientas del cálculo. Por esa razón los cursos de esta disciplina aparecen en los planes de estudio de todas las carreras científicas y técnicas.

LIBRO DE DERIVADAS EJERCICIOS RESUELTOS DE CALCULO DIFERENCIAL CLICK AQUI PARA VER
TEXTO DE CALCULO DIFERENCIAL CLICK AQUI PARA VER

TEXTO SOBRE DERIVADAS MATEMATICAS-CALCULO






Deja un comentario