PLANTEO DE SISTEMAS DE ECUACIONES DE 2×2 PROBLEMAS RESUELTOS PDF



PLANTEO DE SISTEMA DE ECUACIONES DE 2 VARIABLES- METODO DE IGUALACION



PLANTEO DE SISTEMA DE ECUACIONES DE 2 VARIABLES – METODO DE CRAMER PROBLEMA RESUELTO


PLANTEO DE SISTEMA DE ECUACIONES DE 2 VARIABLES – METODO DE IGUALACION PROBLEMA RESUELTOS     

PLANTEO DE SISTEMAS DE ECUACIONES DE 2 INCOGNITAS

CLICK AQUI PARA VER PDF    ****

CLICK AQUI PARA PDF
CLICK AQUI PARA VER  VIDEOS

Problema nº 1.- Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas cifras, el número obtenido es 36 unidades mayor que el inicial.
Problema nº 2.- En un triángulo rectángulo, uno de sus ángulos agudos es 12 mayor que el otro. ¿Cuánto miden sus tres ángulos?
Problema nº 3.- La distancia entre dos ciudades, A y B, es de 255 km. Un coche sale de A hacia B a una velocidad de 90 km/h. Al mismo tiempo, sale otro coche de B hacia A a una velocidad de 80 km/h. Suponiendo su velocidad constante, calcula el tiempo que tardan en encontrarse, y la distancia que ha recorrido cada uno hasta el momento del encuentro.
Problema nº 4.- Halla un número de dos cifras sabiendo que la primera cifra es igual a la tercera parte de la segunda; y que si invertimos el orden de sus cifras, obtenemos otro número que excede en 54 unidades al inicial.
Problema nº 5.- La base mayor de un trapecio mide el triple que su base menor. La altura del trapecio es de 4 cm y su área es de 24 cm2. Calcula la longitud de sus dos bases.
Problema nº 6.- La razón entre las edades de dos personas es de 2/3. Sabiendo que se llevan 15 años, ¿cuál es la edad de cada una de ellas?

Problema nº 7.- Un número excede en 12 unidades a otro; y si restáramos 4 unidades a cada uno de ellos, entonces el primero sería igual al doble del segundo. Plantea un sistema y resuélvelo para hallar los dos números.
Problema nº 8.- El perímetro de un triángulo isósceles es de 19 cm. La longitud de cada uno de sus lados iguales excede en 2 cm al doble de la longitud del lado desigual. ¿Cuánto miden los lados del triángulo? Problema nº 9.- Pablo y Alicia llevan entre los dos 160 €. Si Alicia le da 10 € a Pablo, ambos tendrán la misma cantidad. ¿Cuánto dinero lleva cada uno?
Problema nº 10.- La suma de las tres cifras de un número capicúa es igual a 12. La cifra de las decenas excede en 4 unidades al doble de la cifra de las centenas. Halla dicho número.
Problema nº 11.- El perímetro de un rectángulo es de 22 cm, y sabemos que su base es 5 cm más larga que su altura. Plantea un sistema de ecuaciones y resuélvelo para hallar las dimensiones del rectángulo. Problema nº 12.- Hemos mezclado dos tipos de líquido; el primero de 0,94 €/litro, y el segundo, de 0,86 €/litro, obteniendo 40 litros de mezcla a 0,89 €/litro. ¿Cuántos litros hemos puesto de cada clase? Problema nº 13.- El doble de un número más la mitad de otro suman 7; y, si sumamos 7 al primero de ellos, obtenemos el quíntuplo del otro. Plantea un sistema de ecuaciones y resuélvelo para hallar dichos números.
Problema nº 14.- Dos de los ángulos de un triángulo suman 122. El tercero de sus ángulos excede en 4 grados al menor de los otros dos. ¿Cuánto miden los ángulos del triángulo?
Problema nº 15.- Una persona invierte en un producto una cantidad de dinero, obteniendo un 5% de beneficio. Por otra inversión en un segundo producto, obtiene un beneficio del 3,5%. Sabiendo que en total invirtió 10 000 €, y que los beneficios de la primera inversión superan en 300 € a los de la segunda, ¿cuánto dinero invirtió en cada producto?