APLICACIÓN DE LA MULTIPLICACIÓN Y DIVISIÓN DE LOS NÚMEROS NATURALES EJERCICIOS RESUELTOS EN PDF

Share Button


Recordaremos que LA MULTIPLICACIÓN es una suma de sumandos iguales y por lo tanto nos será de mucha utilidad
cuando tengamos que sumar un mismo valor varias veces, como por ejemplo ¿cuánto gastaré en comprar 23 pelotas de S/. 15 cada una?

Si un alumno no conociera la operación “multiplicación”, lo más probable es que sume:

15 + 15 + 15 + . . . (23 veces)

Utilizando la multiplicación, será simplemente efectuar:

15×23 = 345
Por lo tanto necesitaré S/. 345 para comprar las 23 pelotas.

Y así nos encontramos a diario con muchas situaciones donde nos es muy útil la multiplicación.

De igual modo recordemos LA DIVISIÓN, una operación inversa a la multiplicación que tiene que ver con el “repartir” en forma equitativa (en partes iguales). Por ejemplo: Si dispongo de un millar de papel y deseo repartirlo entre los 32 alumnos del aula, ¿cuánto le corresponde a cada uno? ¿el reparto será exacto o sobrarán papeles? ¿Cuántos? y si no deseo que sobren papeles, ¿cuántos adicional al millar deberé llevar?, es claro que para resolver dichas situaciones recurrimos a la división:

Dividimos 1000÷32, el resultado (cociente) nos indica cuántas veces contiene el dividendo (1000) al divisor (32)

Luego, a cada alumno le daré 31 papeles, el reparto no es exacto pues hay un residuo que nos indica que me sobrarán 8 papeles. Ahora si no deseo que me sobre tendré que agregar al millar: 32 – 8 = 24 papeles.

Es en realidad muchas las situaciones de nuestra vida cotidiana donde aplicamos estas dos operaciones y muchas de ellas las resolvemos de una manera muy natural.

Es claro que no podremos abarcar en su totalidad los diversos tipos de problemas relacionados con la multiplicación y la división; a continuación se muestran algunos problemas resueltos el cual esperamos les sirva de guía para resolver los problemas propuestos.
APLICACIÓN: Una de las aplicaciones más importantes de la multiplicación y la división es para hacer conversiones entre unidades de medidas. En esta parte recordaremos algunas equivalencias:
• Medidas de longitud:
1 kilómetro <> 1000 metros
1 metro <> 100 centímetros <> 1 000 milímetros
1 centímetro <> 10 milímetros
• Medidas de tiempo:
1 año bisiesto = 366 días
1 año no bisiesto = 365 días
1 día <> 24 horas
1 hora <> 60 minutos
1 minuto <> 60 segundos
• Medidas de capacidad:
1 tonelada <> 1 000 kilogramos
1 kilogramo <> 1 000 gramos
1 litro <> 1 000 mililitros

MULTIPLICACIÓN Y DIVISIÓN EN PRIMARIA
ANÁLISIS DE PROBLEMAS SOBRE MULTIPLICACIÓN Y DIVISIÓN EN PRIMARIA
Consigna:
A continuación incluimos algunos enunciados de problemas y ejercicios que han sido
tomados de libros de texto de primaria. Para cada uno de ellos:
1) Resuelve los problemas propuestos.
2) Indica los conceptos y procedimientos matemáticos que se ponen en juego en la solución.
3) Identifica diferencias y semejanzas entre los distintos problemas.
4) Para cada problema enuncia otros dos del mismo tipo, cambiando las variables de la tarea,
de manera que uno te parezca más fácil de resolver y otro más difícil.
5) ¿Piensas que los enunciados son suficientemente precisos y comprensibles para los
alumnos de primaria? Propón un enunciado alternativo para aquellos ejercicios que no te
parezcan suficientemente claros para los alumnos.
6) Consigue una colección de libros de texto de primaria. Busca en ellos tipos de problemas
no incluidos en esta relación. Explica en qué se diferencian.
Enunciados de problemas incluidos en libros de primaria:
1. Calcula y descubre un truco para recordar la tabla:
4×1 4×2 4×3 4×4 4×5 4×6 4×7 4×8 4×9 4×10
4
2. Coloca en vertical y calcula: 34×2, 22×3, 71×4, 41×6
3. Expresa en forma de multiplicación y calcula: 557+557+557+557.
4. Copia y completa, como en el ejemplo: (5+8)x4= 5×4+8×4=20+32=52
(9-6)x3=
(7-5)x6=
5. En esta división hay algunos errores. 1526 23
Encuéntralos y corrígelos -132 43
203
-198
006
6. Queremos vaciar un depósito que contiene 54 litros de agua utilizando un cubo en el que
caben 9 litros. ¿Cuántos viajes tendremos que hacer?
7. Un objeto A pesa 18 quilos y un objeto B pesa tres veces menos que el A. ¿Cuánto pesa el
objeto B?
8. ¿Cuál es el área de un rectángulo cuyos lados miden 8 y 6 cm, respectivamente?.
9. ¿Cuántas celdas tiene una tabla de 5 columnas y 3 filas?
10. Para celebrar un cumpleaños se han hecho varias bolsas. En cada una de ellas hay 5
paquetes de caramelos. Cada paquete tiene 6 caramelos. ¿Cuántos caramelos hay en cada
bolsa?
11. Juan tiene una cantidad de dinero. Ignacio tiene 6 veces el dinero de Juan. Paco tiene la
mitad del dinero de Ignacio. ¿Cuántas veces tiene Paco el dinero de Juan?
12. Dos automóviles han dado respectivamente cuatro y ocho vueltas a un circuito. El
segundo recorrió 24.800 metros. ¿Cuál es la longitud del circuito? ¿Cuánto recorrió el
primer coche?
13. Escribe todos los números múltiplos de 6 que sean menores que 100.
14. Expresa estos productos en forma de potencia: 7x7x7x7x7, 9x9x9
15. Escribe estos números en forma de potencia: 100.000, 1.000.000
16. Escribe los números entre 100 y 200 que tengan raiz cuadrada exacta.
17. Calcula: 1225, 2025
18. Calcula el valor aproximado de : 83×39, 31×51, 616×181, 624×38, 494×72, 72×48
B: Conocimientos Matemáticos
1. ESTRUCTURA DE LOS PROBLEMAS MULTIPLICATIVOS DE UNA
OPERACIÓN
1.1. Situación introductoria
A continuación presentamos una colección de problemas en cuya solución interviene la
operación de dividir 20/3:
a) Resuelve los problemas
b) Explica las semejanzas y diferencias que encuentras entre estos problemas. Indica la
clase de números que intervienen, las cantidades, operaciones y relaciones que se
establecen entre estos elementos.
Problemas:
1) Disponemos de 20 pájaros a repartir en tres jaulas. ¿Cuántos pájaros se meterán en cada
jaula?
2) Una pieza de 20 metros de tela se corta en trozos de 3 metros ¿Cuántos trozos resultan?
3) Repartimos una pieza de 20 metros de tela a tres modistas ¿Cuánta tela le corresponde a
cada una?
4) Un camión de 3 toneladas de carga útil debe transportar 20 toneladas de carga ¿Cuántos
viajes deberá hacer?
5) Si repartimos 20 pasteles entre 3 niños, ¿cuánto le toca a cada uno?
6) Pedro tiene 20 millones en acciones. Si el valor de la cotización en bolsa se reduce a la
tercera parte, ¿cuánto dinero le queda?
7) Juan tiene una terraza rectangular de 20 m2. Si el ancho es de 3m, ¿cuál es el largo de la
terraza?
1.2. Clasificación de los problemas multiplicativos
Así como las operaciones aritméticas de suma y resta se construyen inicialmente para
abreviar los recuentos o procesos de medida, la multiplicación y división entera son un medio
de abreviar los procesos de sumar (o restar) repetidamente una misma cantidad o repartir
equitativamente una cantidad entre cierto número de seres u objetos. Por ejemplo, en lugar de
sumar el número 6 nueve veces, decimos directamente que el resultado es 54, sin necesidad
de efectuar las sumas repetidas, porque “sabemos multiplicar”.
Las situaciones que dan sentido a la multiplicación y división entera (situaciones
multiplicativas de una sola operación) se puede clasificar atendiendo al papel que juegan los
números que intervienen en ellas que pueden ser:
 estado, cuando expresan el cardinal de un conjunto, el ordinal de un elemento o la medida
de una cantidad de magnitud;
 razón, cuando expresan un cociente entre cantidades de magnitudes diferentes;
 comparación, cuando indican el número de veces que una cantidad de magnitud está
contenida en otra cantidad de la misma magnitud.
Basándonos en esto, las situaciones multiplicativas de una sola operación se clasifican en:
Situación multiplicativa de razón (ERE): Situación en la que intervienen dos estados E1 y E2
que hacen referencia a magnitudes distintas y una razón R que expresa el cociente de E2
respecto a E1. Cuando la incógnita está en la razón R podemos interpretar la situación en
términos de reparto equitativo y cuando está en el estado E1 en términos de agrupamiento o
descomposición en partes iguales.
Ejemplos:
 Juan compra 3 paquetes de cromos, cada uno de los cuales cuesta 25 pesetas. ¿Cuánto ha
pagado en total?
 Un coche recorre 180 km. en dos horas. ¿Cuál ha sido su velocidad media?
Situación multiplicativa de comparación (ECE): Intervienen dos estados E1 y E2 que hacen
referencia a una misma magnitud y una comparación C que indica el número de veces que
hay que repetir uno de los estados para igualarlo al otro.
Ejemplos:
 Maria tiene 25 pesetas y su hermana Soledad 100. ¿Cuántas veces más dinero tiene
Soledad que María?
 La varilla A mide 70 cm. de longitud y la varilla B mide 7 veces más que la A. ¿Cuánto
mide la varilla B?
Situación multiplicativa de combinación (EEE): Intervienen dos estados E1 y E2 que expresan
los cardinales de dos conjuntos o las medidas de cantidades de dos magnitudes y un tercer
estado Ef que indica el cardinal del producto cartesiano de esos dos conjuntos o la medida de
la cantidad de magnitud producto.
Ejemplos:
 En un baile hay 3 chicos y algunas chicas. Se pueden formar 6 parejas distintas entre ellos.
¿Cuántas chicas hay en el baile?
 En un ortoedro el área de la base es de 9 m2 y la altura de 6 m. ¿Cuál es su volumen?
Situación multiplicativa de doble comparación (CCC): Situación en la que C12 expresa el
número de veces que la primera cantidad de magnitud está contenida en la segunda, C23 indica
el número de veces que la segunda cantidad de magnitud está contenida en la tercera y C13
establece el número de veces que la primera cantidad de magnitud está contenida en la
tercera.
Ejemplo:
 Juan tiene un dinero. Ignacio tiene 4 veces el dinero de Juan. Paco tiene 5 veces el
dinero de Ignacio. ¿Cuántas veces tiene Paco el dinero de Juan?
Las variables de los problemas multiplicativos, y los valores que pueden tomar, son los
siguientes:
 Significado de los números: pueden ser cardinales, ordinales o medidas de cantidades de
magnitud
 Papel de los números en la situación: pueden ser ‘estados’, ‘razones’ o ‘comparaciones’ (ya
definidos al comienzo del apartado).
 Posición de la incógnita: puede ocupar uno cualquiera de los papeles adjudicados a las
cantidades en la situación.
 Sentido de la comparación: indica si el primer término de la comparación es varias veces
mayor o menor que el segundo término.
1.3. Construcción de las operaciones de multiplicación y división entera de números
naturales
La experiencia acumulada en las situaciones anteriores permite construir la
multiplicación y la división entera a partir de:
 la definición de los hechos numéricos básicos (tabla de multiplicar);
 el establecimiento de las propiedades de dichas operaciones;
 la invención de técnicas de cálculo eficaces (orales y escritas);
 la discriminación de las situaciones en las que el uso de dichas operaciones es pertinente.
Al igual que en el caso de la suma y la resta, esto supone un coste de memoria. También
hay que advertir que así como, en la suma, resta y multiplicación a cada par de números les
corresponde un único número, que es el resultado de la operación, en la división entera, dados
dos números, el dividendo y el divisor, obtenemos como resultado otros dos números, el
cociente y el resto1. Por tanto, la división entera es la técnica mediante la cual, dados dos
números, D y d, podemos encontrar otros dos, q y r, tales que D = dq + r y r < d.
Ejercicios:
2. Determina el menor número natural que multiplicado por 7 nos da un número natural que se escribe
usando únicamente la cifra 1. ¿Y únicamente la cifra 2?
3. Expresa los números del uno al diez como resultado de operaciones entre números en las que, en
total, intervengan cuatro treses.
4. Suponemos que los números naturales D y q son tales que D<4500, y q=82. La división entera del
número D por d da como cociente q = 82, y resto r = 45. Buscar, justificando la respuesta, el conjunto
de pares (D, d) que cumple dicha condición.
5. Resolver el problema anterior para r = 112. Discutir la existencia de soluciones según los valores
del resto r.
6. Se resta de 3 en 3 a partir de 50 hasta que se obtiene el menor número natural posible: “50, 47, 44,
41, …” ¿En qué número termina esta serie?
7. Se resta de 3 en 3 hasta obtener el menor número natural posible, pero a partir de 8932: “8932,
8929, 8926, …” ¿En qué número termina esta serie? ¿Cuántos términos tiene esa secuencia de
sustracciones? ¿Cuál es el número que ocupa el lugar 100?
8. Sabiendo que 8562 = (34 x 251) +28
1 Los términos de un producto se llaman factores. El primer término se llama también multiplicando y el segundo
término multiplicador. Los términos de una división entera son el dividendo, el divisor, el cociente y el resto.
Cuando en una división el resto es cero se dice que la división es exacta.
a) ¿Cuáles son el cociente y el resto de la división entera de 8562 por 34?
b) ¿Cuáles son el cociente y el resto en la división de 8562 por 251?
9. Sabiendo ahora que 18846610 = (4973 x 3789) + 3913
c) ¿Cuáles son el cociente y el resto en la división entera de 18846610 por 4973?
d) ¿Cuáles son el cociente y el resto en la división entera de 18846610 por 3789?
10. Sabiendo que 1261541 = (4897 x 257) + 3012. ¿Cuáles son los cociente y el resto en la división
entera de 126154100 por 489700?
2. FORMALIZACIÓN DE LA MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS
NATURALES
En las situaciones y problemas anteriores hemos introducido la multiplicación y división
entera en el conjunto de los números naturales. Puesto que siempre que multiplicamos dos
números naturales obtenemos otro número natural, decimos que la multiplicación es una
operación en el conjunto de los números naturales. La división no es una operación en el
conjunto de números naturales, pero si en el de los números racionales (que incluye los
números negativos).
Estas operaciones se pueden dotar de diversos significados a partir de los cuales los
niños pueden comprender sus propiedades básicas, lo que los preparará para el aprendizaje y
la comprensión de los algoritmos de cálculo. También se han formalizado desde el punto de
vista matemático. A continuación introducimos diversas formalizaciones de estas operaciones
conectándola cuando sea posible con los modelos concretos en que se apoyan.
Definición conjuntista de multiplicación
En esta definición se parte de la idea de producto cartesianos de conjunto. La
multiplicación corresponde a la idea de repetición, pues al formar un producto cartesiano se
repite cada elemento del primer conjunto junto a cada elemento del segundo. Recoge
especialmente los problemas de combinación, como visualizamos en el siguiente esquema:
A B
Card(A)=3 Card (B)=2
a b c e f
Card (AxB) = Card (A) x Card (B)
ae af be bf ce cf
AxB
Definición: Dados dos números naturales a, b, se llama multiplicación axb al cardinal del conjunto
producto cartesiano AxB, siendo A y B dos conjuntos cuyo cardinal es a y b, respectivamente.
Esta definición pone en juego dos operaciones bien distintas:
Por una parte la operación que se hace sobre los conjuntos (se combinan entre si dos colecciones
formar una nueva colección con la totalidad de los elementos que pertenecen a cada uno de ellos; cada
elemento de la nueva colección es un par (ab) donde a es un elemento del primer conjunto y b uno del
segundo).
Por otra parte la operación que resulta al nivel de los números de elementos (cardinales) que
contienen, operación que es la multiplicación de dichos cardinales.
Propiedades:
- Clausura: El producto de dos números naturales es otro número natural.
- Asociativa: (axb)xc = ax (bxc)
- Commutativa: axb = bxa
- Existencia de elemento neutro: el natural 1; ax1=1xa = a,  a
N
- Distributiva respecto a la adición: ax(b+c) 0 axb+axc para cualquieras números a, b y c.
Al tener la propiedad de clausura, la multiplicación es una ley de composición interna en N. Esto
quiere decir que a cada par de números naturales se le hace corresponder otro número natural, que
suele llamarse la suma de ambos números.
Definición recursiva de la multiplicación (basada en los axiomas de Peano)
Esta manera de definir la suma corresponder a uno de los aspectos del aprendizaje de la
noción de adición por los niños: “repetir varias veces un mismo sumando”.
Al estudiar los números naturales vimos como se podían definir estos números a partir de los
axiomas dados por Peano. A partir de ellos es posible definir la multiplicación en forma recursiva,
partiendo de un número p cualquiera y de su siguiente sig(p). Esta es la definición:
 px 1 = p para todo número natural p
 p x sig(n) = pxn+n, para todo n diferente de cero.
En consecuencia, procedemos como sigue:
- Como 2 es el siguiente de 1, p x2= pxsig (1)= px1+p= p+p; se suma dos veces el número p
- Para multiplicar el número por 3, como 3 el siguiente de 2, p x3= pxsig (2)= px2+p= p+p+p; se
suma tres veces el número p
- Así sucesivamente
Podemos comprobar como con esta definición podemos encontrar el producto de dos números
cualquiera. Por ejemplo:
4×3= 4x S(2)= (4×2)+4 = (4xS(1))+4 = (4×1+4)+4=4+4+4
Es decir, 4 x 3 es el número que obtienes al repetir cuatro tres veces.
Definición conjuntista de división con resto
Dados dos naturales n y d, dividir n por d es repartir un conjunto de n elementos en
tantos subconjuntos de d elementos como sea posible. El número de subconjuntos formados
es el cociente y los elementos que quedan es el resto.
Este proceso se puede ver como una repetición de la sustracción.
Ejemplo: 27-5 = 22; 22-5=18; 18-5=13; …
Definición aritmética de división entera:
Dados dos números naturales n y d, d 0 y n  d, dividir n por d significa encontrar
otros dos números naturales q y r tales que n = d.q + r, siendo r < d.
Una condición para q y r equivalente a la anterior es la siguiente:
q.b  a < (q+1).b; r = a-q.b
Si el resto es cero se dice que la división es exacta. En este caso la división se puede
considerar como la operación inversa de la multiplicación, esto es, “calcular el número que
multiplicado por d dé como resultado n (repartir un conjunto de n elemento en subconjuntos
de d elemetos).
La división no es una ley de composición interna en N ya que a dos naturales, el
dividendo y el divisor, se le hace corresponder no uno sino dos números naturales: El cociente
y el resto. Se considera, sin embargo, como una de las operaciones aritméticas en N.
Una propiedad útil de la división entera:
Si se multiplica el dividendo y el divisor de una división por un mismo número n, no
se modifica el cociente de la división, pero cambia el resto, que queda también multiplicado
por n.
Aplicando esta propiedad obtenemos que 61000 dividido por 9000 da como cociente 7 y
resto 7000, ya que 61 divido por 9 da como cociente 7 y resto 7, lo que se puede hacer
mentalmente.
3. TÉCNICAS DE CÁLCULO DE LA MULTIPLICACIÓN Y DIVISIÓN ENTERA
3.1. Estrategias de obtención multiplicaciones y divisiones enteras básicas
Ejercicios
11.¿Cuánto es veinticinco por doce? ¿Cómo obtienes la respuesta sin usar papel y lápiz?
12 . Calcula el cociente y el resto de la siguiente división entera 345678 : 23, restando múltiplos del
divisor.
El uso de estrategias intermedias para obtener multiplicaciones y divisiones básicas es
mucho menos frecuentes que en la suma y resta debido a que la escuela ejerce una fuerte
presión para que los niños memoricen la tabla de multiplicar. Las estrategias más frecuentes
para obtener alguno resultados de dicha tabla son:
 Sumar reiteradamente. Se multiplica sumando el multiplicando tantas veces como indique
el multiplicador. Por ejemplo; “ocho por tres es ocho más ocho, dieciseis, más ocho,
veinticuatro”. También se puede utilizar en la división entera. Por ejemplo, para calcular
“doce entre tres” se calcula cuántas veces hay que sumar tres para obtener doce.
 Restar reiteradamente. Se obtiene un cociente restando el divisor del dividendo todas las
veces que sea posible. Por ejemplo: “veinticuatro dividido por seis, veinticuatro menos
seis, dieciocho, menos seis, doce, menos seis, seis; cabe a cuatro” .
 Repartir. Consiste en efectuar la división por medio de la escenificación de una técnica de
reparto. Por ejemplo: “veinticuatro dividido por seis; tengo que repartir veinticuatro
objetos entre seis personas; si le doy dos objetos a cada una sobran doce; si le doy cuatro
objetos a cada una no sobra ninguno, pues cuatro”.
 Recitar las tablas. Se recita toda la tabla hasta llegar al resultado pedido. Por ejemplo,
para calcular “seis por cuatro” se dice: “seis por uno, seis, seis por dos, doce, seis por tres,
dieciocho, seis por cuatro, veinticuatro” .
 Permutar términos. Preguntan “ocho por seis” y pensamos “seis por ocho, cuarenta y
ocho”.
 Multiplicar en vez de dividir. Preguntan “treinta y cinco dividido por siete” y pensamos
“siete por cinco, treinta y cinco, cinco”.
 Sumar o restar el multiplicando o multiplicador. Preguntan “ocho por siete” y pensamos
“ocho por seis, cuarenta y ocho, más ocho, cincuenta y seis” o bien “ocho por ocho,
sesenta y cuatro, menos ocho, cincuenta y seis” .
 Calcular el doble o la mitad. Por ejemplo, “seis por cuatro; seis por dos, doce, por dos,
veinticuatro” o “siete por cinco; siete por diez, setenta, la mitad treinta y cinco”
 Calcular con los dedos. Por ejemplo, para obtener el producto de 9 por cualquier otra
cifra, por ejemplo, 6, se levantan las dos manos y se baja el dedo que hace el número seis
del total de diez dedos. Los dedos que quedan a su izquierda representan el número de
decenas del producto y los que quedan a su derecha el número de unidades.
Las tres primeras estrategias son propias de gente poco escolarizada. La cuarta se suele
dar en los niños que están aprendiendo las tablas de multiplicar y todavía no controlan
totalmente el proceso. La quinta y la sexta son muy frecuentes. La séptima y la octava se dan
con una cierta frecuencia aunque son más habituales en números más grandes. Las estrategias
de cálculo con dedos han desaparecido casi totalmente, pero fueron muy importantes en otras
épocas.
3.2. Técnicas orales y de cálculo mental de multiplicación y división entera
El objetivo de las técnicas orales es redondear, obtener números sencillos, y son las
siguientes:
 Intercambio de términos. Consiste en intercambiar el orden de los factores. Por ejemplo,
nos dicen “doce por veinticinco” y pensamos en “veinticinco por doce”.
 Supresión o añadido de ceros. Se prescinde de los ceros finales de los números y se
añaden después de efectuada la operación. Ejemplo: “siete mil por cincuenta; siete por
cinco, treinta y cinco; trescientas cincuenta mil”; “mil quinientos dividido por treinta;
quince entre tres, cinco; cincuenta” .
 Distribución. Se descompone uno de los números en sumandos o sustraendos y se aplica
la propiedad distributiva. En el caso de la división sólo se puede descomponer el
dividendo. Ejemplos: “veinticinco por veinticuatro es veinticinco por veinte más
veinticinco por cuatro; veinticinco por veinte, quinientos; veinticinco por cuatro, cien;
seiscientos”; “veinticinco por veinticuatro es veinticinco por veinticinco menos
veinticinco; veinticinco por veinticinco, seiscientos veinticinco; menos veinticinco, seiscientos”;
“ciento sesenta y ocho dividido por catorce; ciento sesenta y ocho es ciento
cuarenta más veintiocho; ciento cuarenta entre catorce, diez; veintiocho entre catorce, dos;
diez y dos, doce” .
 Factorización. Consiste en descomponer en factores uno o los dos términos de la
operación. Ejemplos: “veinticinco por veinticuatro; veinticuatro es cuatro por seis;
veinticinco por cuatro, cien; cien por seis, seiscientos” ; “ciento ochenta dividido por
quince; ciento ochenta entre tres, sesenta; sesenta entre cinco, doce” .
 Compensación. En el producto se multiplica un término por un número mientras el otro se
divide por el mismo número. En la división entera se multiplican o dividen los dos
términos por un mismo número. Ejemplos: “veinticinco por veinticuatro es lo mismo que
cincuenta por doce; cincuenta por doce es cien por seis, seiscientos” ; “ciento ochenta
dividido por quince es lo mismo que sesenta entre cinco, doce” .
La factorización y compensación modifican el resto cuando se utilizan en divisiones que
no son exactas y éste tiene que ser reconvertido “a posteriori”. Por ejemplo, ciento ochenta y
tres dividido entre quince tiene de resto tres. Sin embargo, si dividimos sesenta y uno entre
cinco el resto es uno. Para reconvertir el resto es necesario aplicarle la operación u
operaciones inversas de las aplicadas a dividendo o divisor .
3.3. Técnica escrita de multiplicación
Descripción del algoritmo de la multiplicación
Supongamos que queremos multiplicar 346 por 38. Haremos los pasos siguientes:
 Se elige como multiplicando el número mayor. Se escribe el
multiplicando y debajo el multiplicador. Se traza una raya horizontal
debajo del multiplicador.
 Si el multiplicando o multiplicador son números acabados en ceros se
prescinde de dichos ceros y, al finalizar el algoritmo, al resultado
obtenido se le añadirán los ceros de multiplicando y multiplicador juntos.
346
x38
______
 Se elige la primera cifra significativa del multiplicador empezando por
la derecha y se multiplica por la primera cifra significativa del
multiplicando, también empezando por la derecha.
4..
346
x38
______
8
 Si el resultado de ese producto es menor que 10 se escribe debajo de la
raya. Si es mayor o igual que 10 se escriben las unidades debajo de la
raya y la cifra de las decenas (llevada) se guarda para añadirla a la
operación siguiente.
3 ..
346
x38
______
68
 Se pasa a multiplicar la misma cifra del multiplicador por la cifra
siguiente del multiplicando y sumándole la llevada si existe. La cifra de
las unidades del resultado se escribe bajo la raya, a la izquierda de la
cifra ya escrita y la cifra de las decenas, si existe, se guarda para incorporarla al producto
siguiente.
 Se continúa el procedimiento hasta llegar a la última cifra del
multiplicando. El resultado de esta operación se escribe íntegro debajo
de la raya.
346
x38
______
2768
 Se toma la cifra de las decenas del multiplicador y se repite el
procedimiento anterior escribiendo el resultado debajo del resultado
anterior y haciendo que la cifra de las unidades de este segundo
resultado quede situada en la misma columna que la cifra de las decenas
del primer resultado.
 Se continua el procedimiento hasta que todas las cifras del
multiplicador han sido utilizadas. Si alguna de las cifras intermedias del
multiplicador es un cero se prescinde de ella y el resultado de
multiplicar la cifra siguiente por el multiplicando se escribe debajo del último resultado de
manera que la cifra de las unidades del primero coincida en la misma columna con la de
las centenas del segundo.
3346
x38
______
2768
+10038º
_________
103148
 Se traza una segunda raya horizontal debajo del último producto realizado y se procede a
aplicar el algoritmo de la suma a los números situados entre las dos rayas.
 El número que aparece bajo la segunda raya es el producto de los dos números iniciales.
Descripción de la parte oral del algoritmo
Este algoritmo se acompaña de una cantinela oral cuyo objetivo es:
 facilitar la obtención de los hechos numéricos básicos de multiplicación;
 ayudar a retener en memoria la cantidad llevada;
 realizar oralmente la suma de números de dos cifras con números de una cifra.
Justificación del algoritmo
El algoritmo se justifica por la posibilidad de descomponer los números en sus unidades
y por las propiedades distributiva del producto respecto a la suma y asociativa y conmutativa
de suma y producto.
Por ejemplo, multiplicar 346 x 38 es lo mismo que multiplicar (300 + 40 + 6)(30 + 8) y
teniendo en cuenta las propiedades asociativa, distributiva y conmutativa de sumas y
productos, eso es lo mismo que (300 x 8 + 40 x 8 + 6 x 8) + (300 x 30 + 40 x 30 + 6 x 30). Si
prescindimos de los ceros, esta expresión refleja el producto de cada una de las cifras del
multiplicando por cada una de las cifras del multiplicador y la suma posterior de los
resultados obtenidos, que es precisamente lo que se hace en el algoritmo.
3.4. Técnica escrita de división entera
Las técnicas escritas de suma, resta y multiplicación son algoritmos pero la que
corresponde a la división entera no lo es, es un semi-algoritmo pues exige toma de decisiones
en determinados momentos. Es un proceso que obliga a realizar tanteos, estimaciones y a
rehacer alguna de sus partes si la estimación no resulta correcta.
Otra diferencia de la división entera escrita respecto a los algoritmos de las demás
operaciones es que en ella se trabaja de izquierda a derecha mientras que en los otros los
números se recorren de derecha a izquierda.
Descripción de la técnica escrita de división entera
 Se escribe el dividendo y a su derecha el divisor encuadrado por una línea vertical y otra
horizontal.
 Si tanto dividendo como divisor acaban en cierto número de ceros, se mira cual de los dos
acaba en menos ceros y esos ceros se suprimen tanto al dividendo como al divisor. Una
vez terminada la división, al resto hay que añadirle tantos ceros como inicialmente se
suprimieron al dividendo o al divisor.
 Empezando por la izquierda, se toman en el dividendo tantas cifras como tenga el divisor.
Si el número así elegido es menor que el divisor se toma una cifra más.
 Se estima cuántas veces cabe el divisor en el número elegido (para esto se necesita una
técnica auxiliar) y la cifra obtenida en la estimación se escribe debajo del divisor y será la
primera cifra del cociente.
 Se multiplica dicha cifra por la cifra de las unidades del divisor y el resultado se lleva a la
cifra de las unidades del número elegido en el dividendo para efectuar una resta.
 A la cifra de las unidades de este último número se le añaden el número de decenas
necesarias para que la resta sea efectuable y el resultado de la resta se escribe debajo en la
misma columna.
 Se multiplica de nuevo la primera cifra del cociente por la cifra de las decenas del divisor
y al resultado se le suma la cifra de las decenas añadidas para efectuar la resta anterior. El
número así obtenido se lleva a la cifra de las decenas del número elegido en el dividendo
para proceder a restar. Se reitera el procedimiento hasta terminar de multiplicar la cifra del
cociente por todas las cifras del divisor .
 Si, como consecuencia de una estimación errónea, la operación resulta imposible o el
número que aparece escrito bajo el dividendo resulta ser mayor o igual que el divisor,
debe borrarse la cifra del cociente y el número escrito debajo del dividendo y comenzar de
nuevo.
 Una vez acabado este proceso se baja la cifra siguiente del dividendo y se coloca a la
derecha del último número escrito bajo el dividendo. Con este nuevo número así obtenido,
y en el supuesto de que sea mayor o igual que el divisor, se procede a estimar cuántas
veces cabe el divisor en él, se escribe el resultado de la estimación como segunda cifra del
cociente y se repite el procedimiento anterior hasta agotar todas las cifras del dividendo.
 Si el número al que hacemos referencia en el apartado anterior es menor que el divisor, se
escribe un cero como siguiente cifra del cociente y en el dividendo se baja la cifra
siguiente y se comienza de nuevo la estimación. Si no existe cifra siguiente que bajar la
división habrá terminado.
 Por último, una vez finalizado el procedimiento, el número que aparece escrito debajo del
divisor será el cociente de la división y el último número escrito debajo del dividendo será
el resto.
3.5. Técnica auxiliar de estimación
Es una técnica oral que tiene los siguientes pasos:
 Si la parte del dividendo que se esta considerando tiene el mismo número de cifras que el
divisor, se tiene en cuenta la primera cifra de ese dividendo (empezando por la izquierda)
y la primera del divisor; si tiene una cifra más se consideran las dos primeras cifras del
dividendo y la primera del divisor.
 Se calcula oralmente el cociente de dividir la primera o dos primeras cifras del dividendo
por la primera cifra del divisor y el resto que quedaría.
 Se multiplica el cociente así obtenido por la segunda cifra del divisor y se compara la
llevada que produce esta multiplicación con el resto que tenemos. Si la llevada es mayor
que el resto hay que elegir un cociente que tenga una unidad menos. Si la llevada es
menor en más de una unidad del resto se mantiene el cociente.
 Si la llevada es igual que el resto o difiere de él en una unidad menos hay que multiplicar
el cociente por la tercera cifra del divisor, tener en cuenta la llevada y sumársela al
producto del cociente por la segunda cifra del divisor. Se compara de nuevo la llevada así
obtenida con el resto. Si la llevada es menor o igual que el resto el cociente se mantiene, si
es mayor el cociente se disminuye en una unidad.
Descripción de la parte oral de la técnica
Esta técnica se acompaña de una cantinela oral cuyo objetivo es:
 facilitar la obtención de los hechos numéricos básicos de multiplicación y división;
 restar oralmente números de hasta dos cifras cuya diferencia es menor que una decena,
utilizando la estrategia de “sumar en vez de restar”;
 modificar directamente el minuendo en función del tamaño del sustraendo ayuda a retener
en memoria la llevada;
 realizar oralmente la suma de números de dos cifras con números de una cifra.
Justificación de la técnica
La justificación del algoritmo se basa en la posibilidad de descomponer los dividendos en
suma de números divisibles por el divisor y en la existencia de la propiedad fundamental de la
división entera (n = dq + r), la distributiva a derecha de la división respecto a la suma y la
conmutatividad de producto y cociente (a. b : c = a: c. b).
Por ejemplo, 3748 : 6 es lo mismo que (3600 + 148) : 6. Esto equivale, por la propiedad
distributiva a izquierda de la división respecto a la suma, a 3600 : 6 + 148 : 6. Prosiguiendo
con la idea de descomponer el dividendo en números divisibles por el divisor se tiene que
3748 : 6 = 3600 : 6 + 120 : 6 + 24: 6 + 4 : 6 = 600 + 20 + 4 + ( 4 : 6) = 624 + ( 4 : 6), lo que
nos permite obtener el cociente, 624, y el resto, 4. Y esto es el fundamento de la técnica
escrita de división entera.
Ejercicios
13. A continuación se realizan algunas operaciones utilizando técnicas orales. Indica en cada caso las
técnicas utilizadas.
c) 2500 x 13, tres por veinticinco, setenta y cinco, mas doscientos cincuenta, trescientos veinticinco,
treinta y dos mil quinientos.
d) 156 : 12, setenta y ocho dividido por seis, treinta y nueve dividido por tres, trece.
e) 15 x 24, es lo mismo que treinta por doce, lo mismo que sesenta por seis, treinta y seis, trescientos
sesenta.
14. Realiza oralmente las siguientes operaciones, indicando en cada momento la técnica empleada:
524- 38; 127 + 289; 210 x 16; 360 : 24
3.6. Otras técnicas escritas de multiplicación y división entera
a) Algoritmo extendido de multiplicación.
Evita el problema de las llevadas pero resulta muy largo de escribir por lo que se usa
poco. Además, resulta difícil decidir en qué columna debe colocarse cada uno de los
productos parciales. Veamos el siguiente ejemplo:
5 4 2 7
3 7 5
3 5
1 0
2 0
2 5
4 9
1 4
2 8
3 5
2 1
6
1 2
1 5
2 0 3 5 1 2 5
5 6 4 0 2 1 4 3 5___
4 3 5 1 2 9 6

1 2 9 0
8 7 0

4 2 0 2
3 9 1 5

2 8 7 1
2 6 1 0

2 6 1
b) Algoritmo extendido de división
En España se enseña como un algoritmo intermedio para
llegar al algoritmo tradicional, pero la elección de un algoritmo
de resta en el que las llevadas se le restan al minuendo en vez de
sumárselas al sustraendo obliga en muchos países a presentar
este algoritmo como un algoritmo terminal de la división.
c) Multiplicación y división por duplicación
Se trata de una algoritmo histórico usado en muchas culturas; hoy
en día ha caído en desuso. Para multiplicar 457 x 86 se escribe en una
columna el número 457 y en otra el número 1 y se duplican
sucesivamente esos números hasta que en la segunda columna nos
acercamos lo más posible a 86. Finalmente se suman los términos de
la primera columna que corresponden a términos de la segunda
columna cuya suma sea 86.
Para dividir 457: 86 se coloca en una columna el divisor 86 y en
otra el número 1. Se duplican sucesivamente los números hasta que en la primera columna
nos acercamos lo más posible al dividendo. Después se suman todos los términos de la
4 5 7
9 1 4
1 8 2 8
3 6 5 6
7 3 1 2
1 4 6 2 4
2 9 2 4 8
1
2
4
8
16
32
64
3 9 3 0 2
primera columna cuya suma no sobrepase el dividendo. La suma de los términos
correspondientes de la segunda columna nos da el cociente. El resto será 457 -430 = 27.
d) Multiplicación por doble y mitad
Ha sido un algoritmo habitual en sociedades iletradas donde el conocimiento
de la tabla de multiplicar se sustituía por técnicas de calcular dobles y mitades.
Para multiplicar 457 x 86 se escriben los dos números y mientras
el primero se dobla el segundo se divide por dos, prescindiendo de
decimales, hasta llegar a la unidad. Al final se suman todos los
términos de la primera columna que corresponden a números impares
de la segunda columna.
e) Multiplicación en “celosía”
Se trata de un algoritmo de
multiplicación usado en Europa hasta el
siglo XVI en el que fue sustituido por el
actual. Es un buen algoritmo y se
supone que las razones de su sustitución
fueron de orden tipográfico. El
multiplicando se escribe encima de la
rejilla y el multiplicador a la derecha.
En cada casilla se escribe el resultado
de multiplicar las correspondientes cifras de multiplicando y multiplicador. Finalmente se
suma en diagonales y el resultado del producto aparece debajo y a la izquierda de la rejilla.
f) División en “galera”
Fue usada hasta el siglo XVII en que se sustituyó por la
técnica actual.
Equivale a un algoritmo de división extendido pero la
colocación de los números es distinta.
Para dividir 44977 : 382 se seguían los pasos que
reproducimos en la figura.
86
172
344
1
2
4
430 5
4 5 7
9 1 4
1 8 2 8
3 6 5 6
7 3 1 2
1 4 6 2 4
2 9 2 4 8
87
43
21
10
5
2
1
3 9 3 0 2
4 3 4 x
1
2
9
1
2
3
2
4
1
8
2
4
6
1 5 6 2 4
382
67
44977
382
1
382
29
675
44977
3822
38
11
382
2
298
6753
44977
38224
387
26
117
El cociente es 117 y el resto 283.
Ejercicios
15. Construye la tabla de multiplicar números naturales en base 6. Calcula el producto de los
siguientes números que están expresados en base 6, haciendo los cálculos en base 6: 34521(6 x 123(6.
Justifica con este ejemplo el algoritmo tradicional (disposición en colunmas de los resultados
parciales) indicando las propiedades del sistema de numeración posicional y de las operaciones
aritméticas requeridas.
16. Realiza la multiplicación y la división entera de 227 por 41 utilizando el algoritmo de duplicación.
71. Utiliza el algoritmo de resta sin llevadas para restar 17829 de 34234 y el algoritmo de
multiplicación en celosía para multiplicar 258 por 3489.
3.7. Diferencias entre las técnicas orales y escritas
 Las técnicas orales se organizan en torno a nuestro sistema de numeración oral. En
cambio, las técnicas escritas se basan en nuestro sistema de numeración escrito.
 Las técnicas escritas, salvo la de la división, son algorítmicas, mientras que las técnicas
orales exigen una toma de decisiones que permita encontrar números “redondos”
intermedios.
 Las técnicas orales manejan los números globalmente frente a las técnicas escritas que son
analíticas, es decir, manejan los números descompuestos en dígitos.
 En las técnicas orales los números se trabajan de izquierda a derecha y en las escritas de
derecha a izquierda, salvo en la división.
 No son técnicas independientes. Los algoritmos escritos necesitan un apoyo oral y con
frecuencia las técnicas orales van acompañadas de un refuerzo escrito que permita
mantener los números en la memoria.
3.8. Operaciones con calculadora
Actualmente, existe la posibilidad de realizar las operaciones con calculadora. Para ello
necesitamos apretar las secuencias de teclas apropiadas para cada operación. Para obtener la
suma, resta o multiplicación de los números 3489 y 276 se aprietan las teclas siguientes2:
3 4 8 9 2 7 6
3 4 8 9 2 7 6
3 4 8 9 x 2 7 6
 
 

Una vez apretadas las teclas correspondientes el resultado de la operación aparece en la
pantalla.
Resulta un poco más complicado el caso de la división entera. En las calculadoras
ordinarias al apretar la secuencia de teclas siguiente:
3 4 8 9 : 2 7 6 
no se obtiene el cociente y resto correspondientes a la división entera, sino el cociente
correspondiente a la división decimal.
Es decir, aparece en pantalla el número decimal 12.641304 (en las calculadoras el punto
equivale a nuestra coma decimal).
Esto nos permite saber que el cociente de la división entera es 12. Para reconstruir el
resto a partir de ese resultado, se le resta el cociente entero 12 al número que está en pantalla,
se obtendrá 0.6413043; se multiplica ese resultado por el divisor 276 y el número natural 177
2 Esta secuencia no sirve para las Hewlett-Packard que usan el sistema de notación polaco.
que aparece en pantalla será el resto de la división entera. Si el número que aparece es un
decimal se redondea al entero más próximo.
Ejercicios:
18. Usando la función constante de la calculadora calcula el valor de
9x9x9x9x9x9x9x9, o sea, 98
19. El producto de dos números consecutivos es 2070. ¿Qué números son?
20. Si la tecla de multiplicar está estropeada indica cómo se puede calcular el producto,
1234 x 596
21. Calcula el valor exacto de la siguiente multiplicación:
9765432156 x 132547965
22. Utiliza la memoria de la calculadora [M+] para calcular la expresión:
(7984739 + 947326) : (3 x 5287710 – 603683)
23. Comprueba con la calculadora los siguientes patrones y complétalos hasta que puedas decir algo
sobre su campo de validez.
1 . 8 + 1 = 9
12 . 8 + 2 = 98
123 . 8 + 3 = 987
1234 . 8 + 4 = 9876
9 . 9 + 7 = 88
98 . 9 + 6 = 888
986 . 9 + 5 = 8888
9876 . 9 + 4 = 88888
652 – 562 = 332
65652 – 56562 = 33332
6565652 – 5656562 = 3333332
3.9. Potencias, raíces y logaritmos
Además de las operaciones anteriormente citadas, se construye también en el conjunto de
los números naturales una nueva operación, la potencia, para indicar productos repetidos. La
consideración de esta operación no nos ahorra cálculos, ya que el cálculo de una potencia
exige efectuar los productos repetidos, pero sí que permite escribir de forma abreviada dichos
productos repetidos.
 Así, en vez de escribir 3 x3 x3 x3 x3 x3 x3 x3 x3 x3 escribimos 310 y esto quiere decir que
tenemos que multiplicar el número 3 por sí mismo 10 veces. En una potencia c = ab se
dice que a es la base y b el exponente.
 En la igualdad 53 = 125 decimos que 125 es el cubo de 5 pero también podemos decir que
5 es la raíz cúbica de 125 y que 3 es el logaritmo en base 5 de 125.
 En general, si c = ab entonces a  b c y b = logac. El logaritmo y la raíz pueden
considerarse como operaciones inversas de la potencia que nos permiten encontrar un
exponente conocida una potencia y su base o encontrar la base conocida la potencia y el
exponente.
Ejercicios
24. Antes de que se hicieran habituales las calculadoras, había muchas reglas para aligerar los
cálculos. Una de ellas servía para calcular el cuadrado de un número terminado en 5. El resultado es
un número terminado en 25, delante del cual se ponía el resultado de multiplicar el número que
precede a 5 por ese mismo número aumentado en una unidad. Por ejemplo, 352 = (3.4)25 = 1225, 752
= (7. 8)25 = 5625. ¿Cuál es la justificación de esta regla?
25. Justifica si es cierta o falsa la siguiente regla: “Piénsese en dos números naturales consecutivos.
Multiplíquense. El resultado multiplíquese por 4. Al resultado súmesele 1. Extráigase la raíz cuadrada
del resultado. El número que resulta es la suma de los dos que se pensaron inicialmente.
26. Halla un cuadrado perfecto de la forma AABB.
4. MODELIZACIÓN ARITMÉTICA DE SITUACIONES FÍSICAS O SOCIALES
Como ya hemos visto, las operaciones aritméticas son útiles conceptuales que el hombre
inventó para resolver ciertas situaciones físicas o sociales problemáticas. Pero, aunque al
principio, dichas operaciones estaban directamente ligadas a determinadas acciones físicas,
poco a poco, se abstrayeron y se pasó a considerarlas un dispositivo que asocia a dos números
dados un tercer número siguiendo determinadas reglas.
Además, el número creciente de aplicaciones diferentes de las operaciones aritméticas
hace que ya no se asocien a un problema particular. Se produce, por tanto, una disociación
entre las operaciones y las situaciones que les dieron origen, convirtiéndose en un
conocimiento separado de los problemas que resuelve. De modo paralelo, se desarrolló el
concepto abstracto de número entendido como un elemento de un conjunto en el que están
definidas unas operaciones que cumplen determinadas propiedades y desligado de las técnicas
sociales de recuento y medida.
Este proceso de progresiva abstracción del número y las operaciones aritméticas es la
base del desarrollo matemático occidental. Por otro lado, lo matemático se separa de lo
matematizado. El conocimiento de las operaciones aritméticas, de sus propiedades y de las
técnicas orales y escritas de cálculo nos proporciona una herramienta muy poderosa pero nos
exige saber cuándo y dónde utilizarla. Aparece así una nueva problemática: la necesidad de
relacionar las acciones, situaciones y datos con las operaciones aritméticas; es necesario
decidir, por ejemplo, si el problema es “de sumar o de restar”. La traducción de las acciones y
datos de la situación a números y operaciones recibe el nombre de modelización aritmética de
la situación.
En la escuela, las situaciones y problemas planteados no son situaciones “vividas” sino
situaciones “narradas”, que se presentan a través de un texto escrito o de una narración oral,
son los problemas aritméticos escolares3. Esto añade una nueva dificultad: la relación entre
acción y verbo ya que un mismo verbo puede describir varias acciones y una misma acción se
puede nombrar mediante varios verbos distintos.
Problemas aritméticos de varias etapas
La estructura de los problemas que se modelizan por medio de varias operaciones
combinadas es muy compleja y no admite clasificaciones simples como las que existen para
las situaciones que se resuelven con una sola operación.
En los problemas de varias etapas hay que tomar decisiones respecto a qué operaciones
hay que realizar , entre qué datos y en qué orden, es decir, hay que encontrar un camino que
una los datos del problema, lo que se da, con las incógnitas del problema, lo que se pide.
Cuando el camino se recorre desde las incógnitas hacia los datos se le llama “análisis” y
cuando se recorre desde los datos hacia las incógnitas se le llama “síntesis” .
En general, el método de resolución de los problemas aritméticos es un método mixto de
“análisis-síntesis”: se parte de las incógnitas estableciendo las relaciones que existen entre
ellas y los datos y definiendo, si es preciso, incógnitas intermedias, lo que proporciona el plan
de solución del problema y después se ejecuta dicho plan desde los datos hasta las incógnitas,
lo que proporciona la solución del mismo. Se puede construir un diagrama de estructura del
problema que ponga de manifiesto qué operaciones hay que realizar, entre qué datos y en qué
3 Resolver un problema aritmético significa traducirlo en términos de números y operaciones a efectuar entre
ellos, es decir, modelizar aritméticamente la situación a que hace referencia el texto, y ejecutar, finalmente las
operaciones para obtener un resultado.
orden y el recorrido del diagrama en uno u otro sentido nos mostrará la doble vía del análisissíntesis.
Ejemplo: Juan y María son hermanos. Juan compra 3 lápices a 15 ptas cada uno y María
2 cuadernos a 25 ptas cada uno. Pagan con 1000 ptas. ¿Cuánto les devuelven?
El diagrama de estructura de este problemq, que nos muestra el camino que hay que
recorrer para llegar de la incógnita a los datos o viceversa será el siguiente:
_
1000
+
x x
15 3 25 2
? ?
?
?
Ejercicios
27. Unos granjeros almacenaron heno para 57 días, pero como el heno era de mejor calidad de lo que
pensaban, ahorraron 112 kg. por día, con lo que tuvieron heno para 73 días. ¿Cuántos kilos de
heno almacenaron?
28. En un taller de confección disponen de 4 piezas de tela de 50 m cada una. Con ellas se van a
confeccionar 20 trajes que necesitan 3 m de tela cada uno. Con el resto de la tela piensan hacer
abrigos que necesitan 4 m cada uno. ¿Cuántos abrigos pueden hacerse ?
29. Un aeroplano recorrió 1940 km el primer día, el segundo recorrió 340 km más que el primero y el
tercero 890 km menos que entre los dos anteriores. ¿Cuántos kilómetros recorrió el aeroplano en
total?
30. Un comerciante compró 23 resmas de papel a 5500 ptas cada una y las vendió, convertidas en
cuartillas, a 830 ptas el millar. Sabiendo que el comerciante ganó 26220 ptas en la venta de todo el
papel comprado y que una resma tiene 500 pliegos ¿cuántas cuartillas salen de cada pliego?
31. Un automóvil parte de un punto A con velocidad uniforme de 40 km/h hacia otro punto E. Dos
horas después sale de A hacia E otro automóvil con velocidad uniforme de 60 km/h. ¿A qué
distancia de A se encontrarán los dos automóviles?
5. LA ESTIMACIÓN EN EL CÁLCULO ARITMÉTICO
Estimar el resultado de una operación o el de una medida de una cantidad es hacer una
valoración aproximada del mismo. Por ejemplo, para estimar el resultado de 23×19,
realizamos el producto 20×20=400. Algunas características de la estimación en el cálculo son
las siguientes:
 La valoración se realiza, por lo general, de forma mental.
 Se hace con rapidez y empleando números sencillos.
 El valor obtenido no tiene que ser exacto, pero sí adecuado para tomar decisiones.
 El resultado admite soluciones diferentes dependiendo de la persona que lo realiza.
La estimación del resultado de los cálculos aritméticos es de utilidad en casos como los
siguientes:
 Cuando no es posible conocer las cantidades implicadas en una operación de manera
exacta. Por ejemplo, si queremos determinar la superficie de una pared y no podemos
medir su altura; al elaborar un presupueto para un viaje; etc.
 Cuando un cálculo es difícil y nos interesa sólo una aproximación del resultado. Ejemplo:
Si queremos saber el precio de una prenda de vestir cuyo precio está rebajado en un 15
por ciento.
 Cuando queremos comprobar si una operación realizada de forma exacta no tiene un gran
error; por ejemplo, al revisar la cuenta de una compra, o la solución de un problema.
 Cuando se necesita expresar una información numérica de manera más clara; por ejemplo,
el coche vale dos millones y medios de pesetas, en lugar de 2.495.000.
Por último, la estimación es útil ya que su práctica implica un dominio del sistema de
numeración, de las relaciones numéricas y de las operaciones aritméticas, completando el
dominio automatizado de los algoritmos de cálculo escrito.
Procesos de estimación en cálculo
Los procesos de estimación en cálculo consisten en modificar los datos de una operación
para hacerla más sencilla. Esta modificación se lleva a cabo mediante las técnicas de
redondeo, truncamiento o sustitución.
a) Redondeo. Redondear consiste en suprimir cifras de la derecha de un número y sustituirlas
por ceros con el siguiente criterio: Si la cifra que se suprime es mayor o igual a 5 la que va
a continuación se aumenta en una unidad; en otro caso se deja igual.
Ejemplos:
 2346, redondeado a decenas sería 2350, y redondeado a las centenas sería 2300.
 la operación, 1281 + 3436 + 2794, redondeada a los millares sería
 1000 + 3000 + 3000, y redondeada a las centenas sería: 1300 + 3400 + 2800. En el primer
caso el error es inferior a 1500, y en el segundo es inferiror a 150.
Ejercicios
36. Valorar el error que se comete en la resta 27478 – 19824 dependiendo del tipo de redondeo que se
realice.
37. Estimar los resultados de las siguientes operaciones:
1249 + 3684 + 6936 + 2368; 6248 – 1794
489 + 654 + 160 + 346 + 127; 149 x 151
1342 x 104; 997 x 364; 17484 x 1016; 104697:50
b) Trucamiento. Truncar consiste en suprimir dígitos de un número, a partir de un
determinado orden de uniddes, y sustituirlos por ceros. Ejemplo: 2400 es un truncamiento de
2469.
Ejercicio
38. Resolver los ejercicios anteriores mediante truncamiento y comparar los resultados.
c) Sustitución. Este proceso consiste en sustituir los datos por otros próximos a ellos pero
“compatibles” en el sentido de que la operación resulte sencilla. Ejemplo: 368:7  350:7; 29 x
32  30 x 30.
6. DIVISIBILIDAD EN EL CONJUNTO DE LOS NÚMEROS NATURALES
6.1. Definición de divisor y múltiplo. Notaciones y propiedades
Ejercicio
39. Imagínate una tabla de multiplicar que, en vez de tener diez filas y diez columnas, tuviera infinitas
filas e infinitas columnas. ¿Cuántas veces aparecería en los resultados de la tabla el número 360?
Primera definición de divisor:
Dados dos números naturales a y b decimos que a es un divisor de b si existe un número
natural n que multiplicado por a es igual a b, na = b.
Segunda definición de divisor:
Dados dos números naturales a 0 y b decimos que a es un divisor de b si al efectuar la
división entera de b por a se obtiene resto cero.
Estas dos definiciones son equivalentes en el caso de ser a 0. En efecto, si se cumple la
primera, al dividir b entre a obtendremos cociente n y resto cero. Por otra parte, si se cumple
la segunda, b tendrá que ser igual al divisor a por el cociente q y ya hemos encontrado un
número natural que multiplicado por a da b.
Definición de múltiplo:
Se dice que a es múltiplo de b si existe un número natural n que multiplicado por b es
igual a a, a = nb.
Las siguientes expresiones son equivalentes: a es un divisor de b, b es un múltiplo de a, a
divide a b, b es divisible por a. Para indicar que a es divisor de b se utiliza la notación a  b y
para indicar que b es un múltiplo de a, b .
a 
Notaciones algebraicas
Indicaremos los números naturales con letras cualesquiera: a, b, c, n, m, etc.
Si dividimos los números naturales por dos obtenemos una partición en dos
subconjuntos: el conjunto formado por los números que son divisibles por dos, los números
pares, y el conjunto formado por los números que dan resto uno, los números impares.
Indicaremos un número par cualquiera con las expresiones: 2a, 2n, etc. y un número impar
con: 2a + 1, 2n -1, 2m + 3, etc.
Si dividimos los números naturales por tres obtenemos tres subconjuntos: los números
divisibles por tres, los que tienen resto uno y los que tienen resto dos. Los denotaremos por:
3n, 3p, …, 3n + 1, 3m -2, …, 3n + 2, 3a + 5, …, respectivamente.
De modo análogo se denotan los números que se obtienen al dividir por cuatro, cinco,
etc.
Propiedades de la divisibilidad
La relación de divisibilidad tiene las siguientes propiedades:
a) Si un número es divisor de otros dos entonces es divisor de su suma.
b) Si un número es divisor de otros dos entonces es divisor de su diferencia.
c) Si un número es divisor de otro entonces es divisor de cualquiera de sus múltiplos.
d) Si un número es divisor de otro y multiplicamos los dos números por una misma
cantidad la relación de divisibilidad se sigue conservando.
e) Si un número es divisor de otros dos entonces es divisor de su producto.
f) Si un número es divisor de otro entonces es divisor de cualquiera de sus potencias de
exponente natural mayor o igual que uno.
g) La unidad es divisor de todos los números naturales.
h) Todo número natural es divisor de sí mismo.
i) Todo número natural es divisor de cero.
j) Cero sólo es divisor de si mismo.
Ejercicios
39. Escribe todos los divisores de los números: 1800, 5491 y 2187.
40. El número 12 tiene seis divisores: 1, 2, 3, 4, 6 y 12. Cuatro de ellos son pares y tres son impares.
a) Describe la sucesión de números cuyos divisores sean todos, excepto el 1, pares.
b) Describe la sucesión de números que tengan exactamente la mitad de sus divisores pares.
41. ¿Cuál es el menor número natural que al emplearlo como divisor de 68130 y 107275 origina los
restos 27 y 49 respectivamente?
6.2. Criterios de divisibilidad
En general, para saber si un número es divisible por otro se efectúa la división entera y se
comprueba si el resto es cero, pero, en algunos casos, existen reglas que permiten averiguar si
un número es divisible por otro sin necesidad de efectuar la división. A estas reglas se les
llama criterios de divisibilidad. Vamos a enunciar y justificar algunas de ellas. En lo que sigue
suponemos que n es un número natural.
a) Divisibilidad por 2, 5 o 10
Si descomponemos el número n en decenas y unidades, n = 10b + a, se observa que el
término 10b es siempre divisible por 2, 5 y 10. Por tanto, la divisibilidad de n por esos
números depende de la de la cifra de las unidades, a, y, en general, podemos decir que:
un número es divisible por 2, 5 o 10 si, y sólo si, la cifra de las unidades es divisible
por 2, 5 o 10, respectivamente. O también, un número es divisible por 2 si la cifra de
las unidades es par, es divisible por 5 si la cifra de las unidades es 0 o 5 y es divisible
por 10 si la cifra de las unidades es 0.
b) Divisibilidad por 4, 20, 25, 50 o 100
Si descomponemos el número n, supuesto de tres o más cifras, en centenas por un lado y
decenas y unidades por el otro, n = 100c + ba, se observa que el término 100c es siempre
divisible por 4, 20, 25, 50 y 100. Por tanto, la divisibilidad de n respecto a esos números
depende de la divisibilidad de ba que representa las decenas y unidades de n. Podemos decir
entonces que:
un número es divisible por 4, 20, 25, 50 o 100 si, y sólo si, el número formado por la
cifra de las decenas y la de las unidades es divisible por 4, 20, 25, 50 o 100,
respectivamente.
c) Divisibilidad por 8, 40, 125, 200, 250, 500 o 1000
Si descomponemos el número n, supuesto de cuatro o más cifras, en millares por un lado
y centenas, decenas y unidades por el otro, n = 1000d + cba, se observa que el término 1000d
es siempre divisible por 8, 40, 125, 200, 250, 500 y 1000. Por tanto, la divisibilidad de n
respecto a esos números depende de la divisibilidad de cba que representa las centenas,
decenas y unidades de n. Podemos decir entonces que:
un número es divisible por 8, 40, 125, 200, 250, 500 o 1000 si, y sólo si, el número
formado por las centenas, decenas y unidades es divisible por 8, 40, 125, 200, 250,
500 o 1000, respectivamente.
d) Divisibilidad por 3 o 9
Si descomponemos en todas sus cifras un número n de, por ejemplo, 4 cifras, obtenemos
n = 1000d + 100c + 10b + a = 999d + d + 99c + c + 9b + b + a = (999d + 99c + 9b) + (d + c +
b + a) = 9(111d + 11c + b) + (d + c + b + a). Como el primer paréntesis va multiplicado por 9,
ese término será siempre divisible por 3 y por 9 y, por tanto, la divisibilidad de n respecto a 3
o 9 depende de la divisibilidad de d + c + b + a. Esta demostración es generalizable a números
con un número cualquiera de cifras. Por tanto, podremos decir que:
un número es divisible por 3 o 9 si, y sólo si, la suma de sus cifras es divisible por 3 o
9, respectivamente.
e) Divisibilidad por 11
Un número es divisible por 11 si, y sólo si, sumando, por un lado, las cifras que ocupan
lugar par y, por otro, las que ocupan lugar impar y restando el menor de los números
obtenidos al mayor se obtiene un múltiplo de 11.
Ejercicios
42. Algunos pares de números tienen la propiedad de que la suma de los divisores de cada uno de
ellos, excluyendo los propios números, es el otro número. A estos números se les llama números
amigos. Comprueba que los números 1184 y 1210 son amigos.
43. Determina las cifras x e y para que el número
a) 2xy31 sea divisible por 9.
b) 123xy sea divisible por 35
c) 28x75y sea divisible por 33.
d) 2x45y sea divisible por 72.
44. Encuentra el mayor número natural que al emplearlo como divisor de 247, 367 y 427 origina en
todos los casos resto 7.
45. Halla el menor número de 4 cifras que dividido por 4, 7 y 11 da de resto 3.
46. Halla el menor número natural que dividido por 11 tiene resto 6, dividido por 17 tiene resto 12 y
dividido por 29 da 24 de resto.
6.3. Números primos y compuestos
Cualquier número a se puede dividir por 1 y a, que se llaman divisores impropios de a. A
los demás divisores que pudiera tener a se les llama divisores propios.
Un número primo es un número natural distinto de 0 y de 1 que no tiene divisores
propios. Un número compuesto es un número natural distinto de 0 y de 1 que tiene divisores
propios.
Hacemos notar que 0 y 1 no se consideran números primos ni compuestos.
Teorema: Todo número compuesto se puede descomponer en un producto finito de factores
primos y esta descomposición es única.
6.4. Técnicas para descomponer un número compuesto en factores primos
Primera técnica: Se descompone el número en producto de otros varios. Si estos son
primos el proceso se detiene. Si alguno de ellos es compuesto se vuelve a descomponer en
factores hasta que todos los factores obtenidos son primos. Esta técnica se emplea cuando las
descomposiciones son fáciles de obtener. Por ejemplo:
18000=18.10.10.10.=2.3.3.2.5.2.5.2.5=243253
Las sucesivas factorizaciones pueden también expresarse mediante un diagrama en árbol.
Segunda técnica: Es una técnica algorítmica. Consiste en recorrer la sucesión de los
números primos comprobando si son divisores o no del número que queremos descomponer.
Cuando se encuentra un número primo que es divisor se efectúa la división y se continua el
proceso con el cociente. Se sigue así hasta que se obtiene un cociente 1 momento en el que el
proceso queda concluido. Por ejemplo, si queremos descomponer en factores el número
173.512 se emplea el dispositivo gráfico siguiente:
173512
86756
43378
21689
943
41
1
2
2
2
23
23
41
y la descomposición factorial de 173.512 será 23x232x41.
6.5 Técnica para obtener la sucesión de números primos menores que uno dado
Esta técnica se conoce con el nombre de “criba de Eratóstenes”. Para encontrar los
números primos menores que un cierto n se escriben todos los números naturales hasta n. Se
tacha el 1 porque no es un número primo. El primer número que queda sin tachar es el 2 que
sí que es primo. Se recuadra y se tacha su cuadrado, 4, y, a partir de él, se cuentan los
números de dos en dos y los que ocupan el segundo lugar se tachan. Una vez finalizado el
recuento de dos en dos se toma el primer número que queda sin tachar a partir del 2: será e1 3.
Se recuadra, se tacha su cuadrado, 9 y, a partir de él, se cuentan los números de tres en tres y
cada tercer número se tacha. A continuación se toma el primer número que queda sin tachar a
partir del 3 que será el 5. Se tacha su cuadrado, 25, y contando de cinco en cinco se tachan los
números que ocupan el quinto lugar. Se prosigue este proceso hasta llegar a un número primo
cuyo cuadrado sea mayor que n momento en el que el proceso habrá terminado. Los números
recuadrados formarán la sucesión de números primos menores o iguales que n. Un ejemplo
con los números hasta el 100 se muestra debajo.
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
6.6. Técnica para comprobar si un número es primo
Para comprobar si un número es primo se divide por cada uno de los elementos de la
sucesión de números primos, siguiendo el orden de menor a mayor, y constatando que en
todos los casos se obtiene resto distinto de cero. El proceso se para en el momento en que al
efectuar una de dichas divisiones se obtenga un cociente que sea menor que el divisor. A
partir de ahí no hace falta seguir dividiendo y ya podemos decir que el número es primo.
 Si en una división se obtiene resto 0, el dividendo es divisible, no sólo por el divisor de la
división, sino también por el cociente de la misma, por tanto es un número compuesto.
 En el momento en que el cociente es más pequeño que el divisor, ninguna división puede
dar resto 0, pues si lo diera el cociente sería un divisor del número y eso ya se habría
constatado en las anteriores divisiones efectuadas con números primos más pequeños. El
número es primo.
Ejercicios
47. Halla la descomposición en factores primos de los números: 18000000, 60434 y 773.
48. Sólo hay un número con un único divisor: el 1. Los números primos tienen sólo dos divisores.
¿Cómo será la descomposición en factores primos de los números que tienen exactamente tres
divisores? ¿y de los que tienen cuatro, cinco o seis divisores, respectivamente? ¿Tienen alguna
característica común los números que tienen un número impar de divisores?
6.7. Técnica para obtener los divisores y múltiplos de un número
Técnica para obtener los divisores de un número
a) Números con un sólo factor primo: Si la descomposición factorial del número es de la
forma p1
1 sus divisores serán 1, p1, p1
2, p1
3, …, p1
1 . En total 1 +1.
b) Números con dos factores primos: Si la descomposición factorial del número es de la
forma p1
1 p2
2 sus divisores se obtienen multiplicando cada una de las potencias de p: 1, p1,
p1
2, p1
3, …, p1
1 por cada una de las potencias de p2: 1, p2, p2
2, p2
3, …, p2
2 . La mejor forma
de hacerlo es construir una tabla multiplicativa de doble entrada:
1 p1 p1
2 p1
3 …. p1
1
1
p2
p2
2
p2
3
.
..
p2
2
El número total de divisores es ( l +1)( 2 + 1) .
c) En el caso general, n = p1
1p2
2 p3
3 … pm
m los divisores se obtienen multiplicando cada
una de las potencias de p1: 1, p1, p1
2, p1
3, …, p1
1 por cada una de las potencias de p2: 1, p2,
p2
2, p2
3, …, p2
2; cada uno de esos productos se multiplica por cada una de las potencias de p3:
1, p3, p3
2, p3
3, …, p3
1 ; los nuevos resultados se vuelven a multiplicar por las sucesivas
potencias del siguiente factor primo hasta que se multiplica por las sucesivas potencias de pm.
En la práctica, con los dos primeros factores primos se construye una tabla multiplicativa
de doble entrada; los resultados de esa tabla se llevan a una nueva tabla en la que figuran las
potencias del tercer factor primo y así, se van construyendo tablas sucesivas hasta hacer
intervenir al último factor primo. El número total de divisores será ( l + 1)( 2 + 1)( 3 + 1)
…( m + 1).
Técnica para obtener múltiplos de un número
Para obtener los múltiplos de un número natural a se multiplica sucesivamente el número
a por cada uno de los números naturales: 0, 1, 2, 3, etc. Un número tiene infinitos múltiplos.
6.8. Máximo común divisor y mínimo común múltiplo de varios números
Decimos que k es un divisor común de los números al, a2,. .., an si divide a todos ellos. Al
mayor de los divisores comunes a dichos números se le llama máximo común divisor de al, a2
,.., an. Se denota por mcd(a1 ,a2,,…,an).
Decimos que k es un múltiplo común de los números al, a2,. .., an si k es un múltiplo de
todos ellos. Si tenemos en cuenta sólo los múltiplos comunes distintos de cero, al menor de
los múltiplos comunes a dichos números se le llama mínimo común múltiplo de al, a2,, .., an.
Se denota por mcm (al, a2, …, an).
Dos números a y b se dice que son primos entre si si no tienen divisores comunes, esto
es, si mcd(a, b) = 1.
Técnica de obtención del mcd y mcm de varios números
Para calcular el mcd(al, a2,,…, an) se descomponen los números en factores primos.
Entonces, el mcd será el resultado de multiplicar todos los divisores primos comunes a al, a2 ,
…, an, elevados al exponente menor con el que figuren en alguno de los ai.
Para calcular el mcm(al, a2,,…, an) se descomponen los números en factores primos.
Entonces, el mcm será el resultado de multiplicar todos los divisores primos de los números
dados, tanto los comunes a todos los números como los que no lo son, elevados al exponente
mayor con el que figuren en alguno de los ai.
Ejercicios
49. Utiliza el algoritmo de Euclides para hallar el m.c.d. de
a) 3023 y 509 b) 126 y 2500 c) 1789 y 667297
50. Halla dos números naturales sabiendo que su m.c.d. es 14 y su m.c.m. 2310.
51. Halla dos números naturales sabiendo que su producto es 5850 y su m.c.d. es 15.
52. Halla dos números naturales cuyo m.c.d. es 65, su m.c.m. es 9100 y un número intermedio entre
ambos es 270. .
53. Halla dos números naturales que sean proporcionales a 3 y 5 y tales que el producto de su m.c.d.
por su m.c.m. sea 15360.
54. Halla dos números naturales cuya suma es 176 y su m.c.d. es 11.
55. Halla dos números naturales primos entre sí tales que su suma sea un número primo que dividido
por 7 dé un cociente cuya parte entera sea 3. Sabemos además que el m.c.m. de los números buscados
es 90.
56. En el contorno de un campo trapezoidal cuyos lados miden 72, 96, 120 y 132 m., respectivamente,
se han plantado árboles igualmente espaciados. Calcula el número de árboles plantados, sabiendo que
hay uno en cada vértice y que la distancia entre dos consecutivos es la máxima posible.
57. Dos cuerpos de ejército tienen 12028 y 12772 hombres, respectivamente. ¿Cuál es el mayor
número de hombres que puede tener un regimiento si cada cuerpo de ejercito tienen que ser dividido
en regimientos de igual tamaño?
58. Un faro emite señales diferentes: la primera cada 16s, la segunda cada 45s y la tercera cada 2m
30s. Estas señales se emiten simultáneamente en un cierto instante. ¿Qué intervalo de tiempo pasará
hasta que se vuelvan a emitir simultáneamente?
7. TALLER DE MATEMÁTICAS
1. Investigación de propiedades aritméticas:
a) ¿Son iguales las expresiones: (34+27)x5 y 34 + (27 x 5)? ¿En qué se diferencian?
b) Compara 212 + 212 y 224. ¿Cuál es mayor?
2. Buscar dos números cuyo producto esté entre 1500 y 1600; otros dos cuyo producto esté
entre 150 y 160.
3. Comprobación de estimaciones en cálculos:
a) Estima cuáles de las siguientes divisiones tienen un cociente entre 20 y 50. Utiliza la
calculadora para comprobar las respuestas:
426: 13; 43368: 131; 4368: 13; 436: 131
b) En las dos siguientes operaciones indicadas estima el valor desconocido. Comprueba
la aproximación de la estimación con la calculadora
43 x ____ = 2408; 12 x _____ = 672.
4. En las operaciones que vienen a continuación falta alguna cifra que está sustituida por
guiones. Complétalas.
- – 5
x 1 – -

2 – - 5
1 3 – 0
- – -

4 – 7 7 -
- – - 7 – 3 2 5
- – - 
 1 – -
- – - -
- 9 – -

- 7 -
- – -

0 0 0
5. Existen parejas de números tales que su producto es igual al de sus imágenes en un espejo.
Por ejemplo, 23.64 = 46.32. Encuentra otras parejas de números que tengan esta propiedad.
Trata de encontrar una regla que te permita obtener todas las parejas.
6. Elige un número cualquiera. Si inviertes el orden de sus cifras y restas el menor del mayor,
observarás que se obtiene un número que es múltiplo de 9. Demuestra esta propiedad para
números de 2, 3 y 4 cifras.
7. Resuelve los siguientes problemas de productos y cocientes. Indica, en cada caso, los
valores de las variables que intervienen en la situación y el tipo de situación. Cuando
intervengan varias operaciones en un mismo enunciado estúdialas por separado.
a) Un carro transportó 81 sacos de patatas. En cada viaje llevaba 9 sacos. ¿Cuántos viajes
hizo?
b) Un comerciante compró 20 cajas de 12 bolígrafos cada una a 40 ptas. unidad. Otro
compró 12 cajas de 40 bolígrafos cada una a 20 ptas. unidad. ¿Cuánto gastó cada
comerciante ?
c) De mi casa al colegio hay 760 m.¿Cuántos cm ando si voy y vuelvo del colegio?
d) En el cumpleaños de Laura se iban a repartir 108 globos entre 12 niños. ¿Cuántos
tocaban a cada uno? Si explotaron la tercera parte, averigua, sin dividir, los globos que
recibió cada niño.
e) Se han llenado 5432 sacos de trigo. Cada uno pesa 92 kg. y sobran 20 kg. ¿Cuánto
trigo había para llenar los sacos?
f) Cuatro hermanos decidieron repartirse sus ahorros. A cada uno le correspondieron 658
pesetas. ¿Cuánto dinero habían ahorrado entre los cuatro?
g) ¿Cuántos metros mediría un monte que tuviese cuatro veces la altura del Aneto?
8. Resuelve los problemas que se enuncian a continuación utilizando métodos aritméticos.
a) Se quieren repartir 1200 ptas. entre tres personas, de manera que una tenga la mitad de
la otra, y la tercera persona tenga igual que las otras dos juntas. Calcula lo que
corresponde a cada una.
b) Un demandadero tiene que ir 2 veces al mes a un pueblo situado a 25 km del punto
donde reside. Al principio hacía los viajes en coche, costándole 15 ptas el recorrido de
25 km, pero después compró una bicicleta en 1830 ptas, dedicándola exclusivamente
al citado servicio. Teniendo en cuenta que los neumáticos tienen que ser renovados
cada 6000 km, siendo el precio de cada neumático 125 ptas, y que los demás gastos de
conservación de la bicicleta vienen a ser de 60 ptas al año, calcular los años que
habrán transcurrido para economizar el importe de la bicicleta
c) Pablo vendió 160 bocadillos a 200 ptas. cada uno. Cada bocadillo estaba compuesto
de 75 gr. de jamón, 2 rebanadas de pan y mostaza. Pablo pagó 1000 ptas. por cada kilo
de jamón, 60 ptas. por cada barra de pan (de 20 rebanadas) y utilizó 8 botes de
mostaza a 50 ptas. cada uno. ¿Cuánta fue su ganancia?
d) Una costurera, cosiendo a mano, ganaba 50 ptas por día de trabajo. Compró una
maquina de coser a crédito en 4800 ptas y el beneficio que con ella obtuvo lo dedicó a
pagar su importe, consiguiéndolo en 32 semanas. Se desea saber lo que ganó la
modista por día de trabajo, cosiendo a maquina, teniendo presente que no trabajó los
domingos.
9. Representa de manera genérica:
a) un múltiplo de 5.
b) un número que al dividirlo por 8 dé resto 3.
c) los números anterior y posterior a un múltiplo de 4.
d) un número que no es múltiplo de 5
10. Demuestra que:
a) la suma de dos números impares es un número par.
b) la suma de tres números pares consecutivos es un múltiplo de 6.
c) la suma de dos números impares consecutivos es un múltiplo de cuatro.
d) la diferencia entre los cuadrados de dos números consecutivos es siempre un número
impar.
11. El número de páginas de un libro es mayor que 400 y menor que 500. Si se cuentan de 2
en 2, sobra una; de 3 en 3 sobran dos; de 5 en 5 sobran cuatro y de 7 en 7 sobran seis.
¿Cuántas páginas tiene el libro?
12. Un pasillo rectangular de 860 cm. de largo y 240 cm. de ancho se ha embaldosado con
baldosas cuadradas de la mayor dimensión posible para que cupieran un número entero de
estas. ¿Cuál es la dimensión de cada baldosa? ¿Cuántas baldosas se han empleado?
13. El m.c.m. de los términos de una fracción es 340. Determina dicha fracción sabiendo que
no se altera su valor si se suma 20 al numerador y 25 al denominador .
14. Demuestra que si n es un número par los números n(n2+4) y n(n2-4) son múltiplos de 8.
15. Siendo n un número natural, demuestra que 2n3 + 3n2 + n es divisible por 6.

Comments are closed.

DIVISION DE NUMEROS NATURALES EJERCICIOS RESUELTOS EN PDF Y VIDEOS
CUATRO OPERACIONES EN LOS NÚMEROS NATURALES EJERCICIOS RESUELTOS EN PDF